I\ §
JA

/\\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A
A

A

y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

A\

P

) |

L

OF

) §

¥ \\\

AL

OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
or—— SOCIETY

The Physical Structure of Concurrent Problems and
Concurrent Computers

G. C. Fox and W. Furmanski

Phil. Trans. R. Soc. Lond. A 1988 326, 411-444
doi: 10.1098/rsta.1988.0096

i i i Receive free email alerts when new articles cite this article - sign up in the box
Email alerti ng service at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1988 The Royal Society

http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;326/1591/411&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/326/1591/411.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Phil. Trans. R. Soc. Lond. A 326, 411444 (1988) [411]

Printed in Great Britain

The physical structure of concurrent problems and concurrent
computers ‘

By G.C.Fox aNpD W. FURMANSKI

Caltech Concurrent Computation Program, Mail Code 158-79, California Institute of Technology,
' Pasadena, California 91125, U.S.A.

Y 4

—

< |

= — We introduce a physical analogy to describe problems and high-performance

2 3] concurrent computers on which they are run. We show that the spatial characteristics
— of problems lead to their parallelism and review the lessons from use of the early

O hypercubes and a natural particle-process analogy. We generalize this picture to

E 8 include the temporal structure of problems and show how this allows us to unify

distributed, shared and hierarchical memories as well as siMp (single instruction
multiple data) architectures. We also show how neural network methods can be used
to analyse a general formalism based on interacting strings and these lead to possible
real-time schedulers and decomposers for massively parallel machines.

1. INTRODUCTION

PHILOSOPHICAL
TRANSACTIONS
OF

In this paper, we shall sketch a theoretical framework that will allow us to discuss the structure
of both problems and computers. This will illuminate many issues in concurrent computation
where the basic goal can be thought of as finding a suitable map from the problem to the
computer. In §2 we shall summarize some of the ‘experimental’ data that have guided our
theoretical development. This represents analysis of the approximately 100 applications
developed on the hypercube at Caltech. In §3, we introduce a theory of complex systems and
use it to discuss the spatial or data domain aspects of problem structures. These two sections
are essentially a review of material covered in Fox (1983, 1984, 19854, 19864, 19884), Fox &
Otto (1984, 1986) and Fox et al. (19864, b, 1988). In the short rather specialized §4, we
describe an analytic approach to communication algorithms which will be derived by an
automated procedure in §7. Sections 5, 6 and 7 represent rather new material generalizing our

earlier work on spatial structure to that associated with temporal degrees of freedom.
i Conclusions will be found in §8. :

P

O H

= 2. BASIC RESULTS AND LESSONS LEARNED FROM THE USE OF THE HYPERCUBE

E 8 (a) The Caltech-concurrent computation program (C°P)-

=w Although most of the paper will address general computer architectures, much of our

experience comes from using the hypercube concurrent computer. These were developed at
Caltech with the first major hardware, the Cosmic Cube with 64 nodes, being completed in
1983 by Chuck Seitz in the Caltech Computer Science Department. Starting in 1981, we have
built up a research group, now called C*P, whose emphasis is an application-oriented approach
to fundamental issues in computation. We built two generations of hypercubes, the Mark I1
and Mark III, as part of C®P to provide sufficient parallel computing resources to support

PHILOSOPHICAL
TRANSACTIONS
OF

[28
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to W2

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. MK
Www.jstor.org

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

412 G.C.FOX AND W.FURMANSKI

many users. We will finish this phase of our work in summer 1988 when the 128 node Mark
ITIfp hypercube will be complete. This computer features a node shown in figure 1 which
has two Motorola 68020’s, a 68882 floating-point unit, which is enhanced with a secondary
board on each node with a WEITEK XL accelerator giving over 10 megaflops (10 million
floating point operations per second) performance per board. The total system will have half
a gigabyte of memory and a peak performance of over one gigaflop. In figure 2, we show a
commercial NCUBE where a board contains 64 single chip cpus (central processing units),
each with 11 communication channels and one half a megabyte of memory. The NCUBE
system is architecturally quite similar to the Transputer systems discussed by Hey, May and
Wallace (this symposium). Our 512 node NCUBE is now operational as is a 1024 node system
installed in SANDIA’s new computer science division. These two major machines will be our
backbone resource for our research which is centred on the philosophy of ‘Solution of real
problems on real hardware with real software’. E '

We are phasing out the in-house hardware componcnt of C“P as parallel processing
technology is being successfully transitioned to industry. Another crucial part of C*P is the user
community; currently some twenty research groups at Caltech’s ‘Campus and the Jet
Propulsion Laboratory in various fields of computational. science and engineering. C*P
provides these users access to parallel computing hardware and software as well as financial
support for students and postdoctoral research fellows developing applications and algorithms.
The research groups are motivated by both the future promise of parallel computing and the
near-term possibility of using existing machines to solve major computational science projects.
This production use of parallel computers is possible as we stress powerful machines and our
philosophy ensures that we implement full problems and do not get misleading answers from
incomplete implementations. The final component of C®P is a central group to address the
computer science and computer engineering issues. Here, for instance, we develop necessary
systems software; an effort that is still and perhaps even more necessary with the commercial
machines. We also develop fundamental algorithms and research issues such as those described
in the rest of this paper. We have a growing interest in neural networks both for the assignment
problems discussed in §§3 and 7 as well as for an attractive approach to parallel artificial
intelligence. : :

Finally, we stress that even our theoretical work is closely based on the results of the users
group where by now over 100 separate codes have developed. As shown in table 1, these cover
a very wide range of algorithms and disciplines. For more general information we refer the
reader to our recent C3P annual reports (Fox 19865), (Messina & Fox, unpublished results,
C®P-487 (1987)) and also the proceedings of the hypercube conferences (Heath 1986, 1987;
Fox 1988a).

- (b) The architecture of concurrent supercomputers

There are clearly very many (perhaps over 50) different parallel computer architectures
being investigated worldwide. However, there are three important classes of machines that we
shall investigate in this paper (Fox 1987; Fox et al. 1988; Messina & Fox 1987; Messina,
unpublished results, C3P-449 (1987)). These machines differ in their treatment of three
important characteristics described below. -

Architectural characteristic 1: memory structure

A parallel machine consists of many nodes or individual processors. In dlstrlbuted-memory
machines each node has its own local memory; in shared-memory machines a single large

http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS

MARK Jll NODE EOARD

WoToRGiA s Fp. com iccisson . b

usnucu : .

lv;cx BYTES)

OHOLA G520 :ms_xr ;mmmtssb‘«

MAIN PROCESSOR ' SECTION
CEEL2EMPS g
01504 MROPS

,‘,.-——«7- MEMORY BANKS (4 MBYTES TOTAL) ©

ﬂ!AkN HEMORY EECT}ON

M[M
(wf BYIES)

HOTOROLA es:?o o mcmmcrm ‘,

cOMMUN!CATiONS SECY!D
| v smsac oowl myt :

413

Ficure 1. The Mark IIfp hypercube designed and constructed at Caltech’s Jet Propulsnon Laboratory {JPL) (a)
The basic 32 node package which can be extended up to 128 modes. () The dual 68020 based main node
board. (¢) The WEITEK XL chip set based secondary board.

http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL /
SOCIETY 4

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

414 G.C.FOX AND W.FURMANSKI

| 64 Node Processor Board for NCUBE

Ficure 2. The commercial NCUBE/10 hypercube with (a) cabinet which can hold up to 1024 nodes
configured as a 10 dimensional hypercube; (b) basic board containing 64 nodes.

global memory is directly accessible to all nodes. Although memory hierarchy does not directly
affect the parallelism, practical high-performance computers usually exhibit a multilevel
memory hierarchy with a relatively small fast mefnory acting as a cache or local memory to
buffer data from a larger slower memory. We will discuss this in §5.

Architectural characteristic 2 : grain size

This reflects the size of.the node which is measured in terms of the computational capability
of the node and its associated memory. Naturally, there is a continuous choice but we can

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 415

distinguish two very distinct possibilities. Large-grain size machines have a full function node
and substantial memory, currently at least ; megabyte, capable of holding a complete program.
Small-grain size nodes have incomplete nodes, typically single bit, with modest memory,
currently less than about 8Kbytes per node.

Architectural characteristic 3 : control

Here we distinguish siMp (single instruction multiple data) machines where each node
operates synchronously with common instruction stream this is appropriate for small grain size
systems. A second control possibility is MiMp (multiple instruction multiple data) where each
node runs asynchronously controlled by a separate program, typically residing in a large-grain-
size local memory or cached from a global memory.

These three attributes are currently combined in various ways but three choices dominate
as shown below.

Architecture 1 : distributed-memory, small-grain-size siMp ; called hereafter sivp. This choice is found
in two relatively old, the ICL DAP and Goodyear MPP, and two new machines, the
Connection Machine from TMC (Thinking Machines Corporation) and the mini DAP from
AMT (Active Memory Technology).)

Architecture 2 : distributed-memory, large-grain-size MiMD ; called hereafter multicomputer. This choice
is currently exemplified by the hypercube where we have already discussed the in-house
Caltech machines and there are currently four commercial offerings, the AMETEK S14, the
FPS T Series, the INTEL iPSC, and NCUBE Systems 4, 7 and 10. Another important set of
machines of this architecture are built by MEIKO and others around the INMOS Transputer.
We will later mention separately so-called hierarchical and homogeneous machines of this class
to classify the memory structure on each node (Fox 1988¢). The machines with high-
performance vector units on each node, such as the Mark IIIfp shown in figure 1, naturally
need hierarchical memory as described above.

Architecture 3 : shared memory, large-grain-size MiMD; called hereafter shared memory. This is the
dominant commercial architecture; largely because this conservative choice currently allows
the easiest development of software and especially the use of existing codes with automatic
parallelization (Frey & Fox 1988). Examples include the CRAY-2, CRAY-XMP, and ETA-
10; the ALLIANT and its extension CEDAR from Illinois; and systems that are offered with
reasonably large numbers of nodes, namely the ENCORE, SEQUENT, BUTTERFLY and
RP3 from IBM Yorktown.

These are not the only choices; for instance, the GF11 from IBM Yorktown is large-grain
sivp and distributed memory. Further, there is important research on dataflow and other
ideas which may lead to very different architectures from the three discussed above. Again
there are hybrid designs combining features of the separate types in the simple classification
introduced above. '

(¢) Domain decomposition and the space-time structure of problems

All current high-performance concurrent computers with many nodes have obtained their
parallelism from what is called ‘data parallelism’ by Danny Hillis (1985, 1987). We can view
any problem as an algorithm applied to a data set and data parallelism corresponds to
processing separate parts of the data set at the same time. One usually calls this breakup of the
data set as ‘domain decomposition’ and the parts processed independently can be called grains

http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

G.C.FOX AND W FURMANSKI

416
TaBLE 1. CURRENT PARALLEL ALGORITHMS AND APPLICATIONS WITHIN CSP
Biology and computation and neural systems (CNS)
report or
number status name lead personnel HCCAS3 abstract
1 I Structural simulations of neural J. Bower (f), M. Nelson, W. Fur- (A) (C?P-404,
networks using a general- manski, U. Bhalla, M. Wilson 405)
purpose neural network
simulator
P | 2 I Back propagation algorithms for C. Koch (f), E. Felten, J. Hutch- (A261)
< character recognition and inson, S. Otto
—_ computer games
< 3 I Pattern recognition by neural A. Ho, W. Furmanski (A207)
> > networks on hypercubes
@) — 4 I Collective stereopsis R. Battiti (A16, C*P-420)
I~ 23} 5 B Mapping the human genome G. Fox (f), L. Hood (f),
o P. Messina
E O 6 B Modelling complex neurons W. Furmanski, C. Koch (f)
= 9) Chemistry and chemical engineering
—n 7 I Integration of coupled sets of P. Hipes, T. Mattson, M. Wu, (C3P-347)
5 Z ordinary differential equations A. Kuppermann (f)
—9 from chemical reaction
E [dynamics
O&t) 5 8 B Polymer simulations H.-Q. Ding, W. Goddard (f) (A262)
8(’) 9 B Concurrent optimization and A. Skjellum, M. Morari (f)
=<Z: dynamical simulation in chemi-
I cal engineering
A= 10 B Quantum lattice system for high H.-Q. Ding, W. Goddard (f)
T, superconductivity and
Monte Carlo simulation
Engineering
11 C Ray tracing on the hypercube J. Goldsmith (j), J. Salmon (C*P-295, 384,
403) (A73)
12 I Plasma simulations on the Mark P. C. Liewer (j), R. W. Gould (C®P-460) (108)
III (f), V. K. Decyk (UCLA),
J. D. Dawson (UCLA)
13 I Vortex dynamics A. Leonard (f), F. Pepin, (A131)
K. Chua
14 I Synthetic aperture radar (saAR) J. Kim, G. Fox (f), G. Aloisio, (C*P-468)
analysis on the hypercube N. Veneziani (Italy),
P | J. Patterson (j), B. Zimmerman
e d (])s C. Wu (])
—_ 15 I Flux-corrected transport on the D. Walker, G. Montry (Sandia)
< NCUBE ' '
o > 16 I Parallel-free-language R. Williams (A189) (C*P-424,
@) = : hydrodynamics _ . 465)
(=4 g Geophysics
= QO 17 I Finite-element wave R. Clayton (f) (A264) (C*P-408)
O propagation
= 18 I Normal modes of the Earth T. Tanimoto (f) (C*P-408)
- 19 I Finite-element flow modelling R. Gurnis, B. Hager (f), (A189) (C*P-408,
5 Z A. Raefsky, G. Lyzenga (j) . 463)
T g Physics »
Bg LOL 20 I Lattice gauge theory with J. Apostolakis, C. Baillie, (A184) (C3P-450,
DA fermions on the hypercube H.-Q. Ding, J. Flower, S. Otto, 411)
oz G. Fox (), R. Gupta (Los- 4
T § : Alamos) ‘ v
O = 21 B Random lattice calculations T. W. Chiu (A183)

http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 417

TABLE 1. (cont.)

report or

THE ROYAL A
SOCIETY :

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

number status name lead personnel "HCCAS abstract
22 Two-dimensional melting M. Johnson (IBM) . . . (A47, C®P-268) .
23 Non-local path integral Monte S. Callahan, M. Cross (f) . - (ALTT) :
- Carlo for helium
24 Nlog N algorithm for J. Salmon, M. Warren (A164)
astrophysical particle dynamics :
25 The hypercube for astronomical P. Gorham, T. Prince (f) (A215)
data analysis ' :
26 Multichannel Schrédinger T. Barnes, D. Kotchan —
equation (Toronto)
General algorithms and numerical analysis
27 LU-decomposition of banded D. Walker, T. Aldcroft, (Ad) (C®P-348)
matrices and the solution of A. Cisneros, G. Fox (f), ,
linear systems W. Furmanski
28 Optimal matrix algorithms and G. Fox (f), W. Furmanski (C®P-314, 329,
communication strategies for : 386) (A265)
homogeneous hypercubes
29 Adaptive multigrid on the Mark E. Van de Velde (C3P-406, 447)
III . (A159)
30 I Finite element methods in E. Felten, R. Morison, S. Otto (A56)
coherent parallel C
31 C Communication strategies for G. Fox (f), W. Furmanski (C3P-405)
network simulations
32 C A concurrent implementation of J. Kim, G. Fox (f), G. Aloisio, (A6) (C®P-468)
the prime factor algorithm N. Veneziani (Italy) ‘
33 C. Concurrent tracking algorithms . T. Gottschalk, I. Angus (A186) (C3P-387,
with Kalman filters 388, 398) (C°P-
) 478-481)
4 Concurrent a—f search E. Felten, S. Otto (C®P-383) (A268)
techniques for computer chess _ :
35 Shift-register sequence random T.-W. Chiu (A182)
number generators on the '
hypercube ;
36 Transaction analysis on the A. Frey, R. Mosteller (IBM) —
NCUBE
37 Branch and bound algorithms E. Felten (A239)
Notes
status - report label affiliation

(C®*P-XXX) C®P document number
(AXXX) HCCA3 abstract number

(f) Caltech Faculty
(j) Jet Propulsion Laboratory

I, in progress
B, beginning
C, complete

C®P documents may be obtained from C3P requests, Caltech Concurrent Computation Program, 206-49,
California Institute of Technology, Pasadena, California 91125. HCCA3 refers to Third Hypercube Conference
(Fox 1988a4).

in a terminology compatible with that of §26. As shown in figure 3, this form of concurrency
corresponds to mapping the problem onto the computer.

map)
domain decomposition : problem — computer hardware. (1.1)

This is a key idea because a major thrust of this paper will be to study this map in terms of the
structure of the two spaces involved ; the target space formed by the computer system and the
initial space formed by the problem. In §3, we will formulate this study in terms of a general
theory of complex systems.

http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

418 ' G.C.FOX AND W.FURMANSKI

COMPUTER PROSLEM

SEISMIC EXPLORATION

GRID POINT —

Y 4

H

Posatble
=
UNIVERSE SIMULATION
>
=
23]
|
O
)
w
%)
p4
g Ficure 3. Concurrent computing as a mapping problem for (a) solution of the wave equation in seismic pro-
(G cessing and (b) evolution of a collection of galaxies. (¢) Searching the game tree in computer chess.
5) 0
2
= Attractive features of data parallelism are its generality and simplicity, and the potential in

most problems for large amounts of parallelism; typical data sets have many degrees of
freedom, say 10° for processing a 100 x 100 x 100 mesh or 10° for the number of missiles to be
tracked (Gottschalk 1987) by some all-encompassing defence system for the free world.
Correspondingly, one can expect potential parallelism (speed-up) of order 10° or 10° on these
two problems.

Note that the three architectures considered in §1¢ typically obtain parallelism from this
same source although there are some important differences.

simp. Synchronous operation with distributed data and processing.

Shared memory. Only processing distributed with a global data set. We emphasize that most
uses of this architecture do correspond to data parallelism even though the data are not
necessarily distributed on the computer.

In the above, we have labelled the three architectures by the abbreviations introduced in
§25b.

We can now introduce a general space-time picture. We will refer to the data domain
associated with any problem as its ‘space’. Consideration of examples will show that a given
computational problem involves some sort of work or computation to be done on each element
of the data domain. This work always has some, in practice discrete, label and we will call this
label ‘time’ and refer to the temporal aspect of the problem. For the simulation of the real
world, the data set is some part of the normal three-dimensional space and the computation
is labelled by true physical time. Thus, our definition of ‘space’ and ‘time’ reduce to their
conventional meaning in this case. Consider the following examples.

(i) Full matrix inversion, multiplication, etc. Here the set of matrix elements in the ‘space’ and
‘time’ corresponds to the label of eliminated or multiplied rows.

(ii) Relaxation methods. Here we are considering Gauss—Seidel or other iterative approach to

Y o

SOCIETY

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 419

the soi tion of typical sparse matrix problems. Again the set of non-zero matrix elements is the
‘space’, and ‘time’ is just the iteration count.

We will later find in §§5-7 that the different computer architectures of §24 treat ‘space’ in
a similar fashion but differ essentially in their treatment of the temporal structure of the
problem.

We can also talk about the ‘space’-‘time’ structure of the computer with ‘space’
corresponding to the distributed nodes of the computer and ‘time’ to elapsed time used by the
computer.

We have used quotes above in defining the concepts of ‘space’ and ‘time’ for arbitrary
problems and computers but we will drop these quotes hereafter and assume the reader
understands the abstraction.

(d) Performance of a homogeneous multicomputer

Many years ago, we developed a simple performance model that has been shown to describe
well the behaviour of our initial applications on the hypercube (Fox 1983, 1984, 19854, 4,
19864, 1988b,¢c; Fox & Otto 1984, 1986; Fox et al. 19864, 1988; Hey ¢t al. 1988). This
is only directly applicable to what we termed homogeneous machines in §24 (but its essential
features apply to all the architectures in §254 and so we describe it here understanding that we
will generalize it in §§5 and 6.

L

— wg%l\:w |—— COMMUNICATION
CHANNEL ¢,
HIERARCHICAL tmem
MEMORY
CACHE

tcalc

Ficure 4. Three critical performance parameters £, ¢,

cale? “mem?
computer.

13

omm Of @ parallel and/or hierarchical memory

In figure 4, we show a generic node of a multicomputer illustrating three parameters where
here we will discuss the first two.
the typical time it takes to perform a 32(64) bit floating point operation;

teomms the typical time it takes to transmit a single word between two nodes.

Values of these parameters are listed in table 2. As discussed, especially in Fox (1988¢), Fox
et al. (1988), (Frey & Fox 1988) and (Hey et al. 1988), these parameters are idealized and
depend on the given application with the message size (amount of information transmitted at
a time) being particularly important. We also define N as the number of nodes and = as the
grain size or number of entities stored in each node. Figures 3 (a) and 5 show a simple case
where the space corresponding to the solution of a two-dimensional partial differential
equation, say V3¢ = —47np, has been split up into square subdomains where each processor

tcalc »

30 . Vol. 326. A

http://rsta.royalsocietypublishing.org/

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

y A\
Y o

_;:

NI
olm
~ =
)
=0
f=w

OF

OF

Downloaded from rsta.royalsocietypublishing.org

420 G.C.FOX AND W.FURMANSKI
(a) ’
e o o o
GRID ojo o o oo
POINT—™*|® ® * ®1® gMPLESTENCIL ese
oo o o oo . .
PROCESSOR eje o o o
BOUNDARY *° "S/I

COMMUNICATED

®)

e o 0o o
e o 0 o
o ofo o o o0 o N
e oo ¢ o o|/]e ¢ HIGHER ORDER -
e ofe o o ofe o STENCIL .
o o|le o 0 oo e
e o o o
e o o o

FiGure 5. An illustration of (1.2) for a simple two-dimensional grid with nearest and next to nearest-neighbour
interactions. () Calculation is 4nt,,,,, communication is 4y/nt...., f, = (1/4/n) t, 00 /taies (8) calculation is

8nt,,,., communication is 84/nt,. ., f. = (1/4/%) t,op 0/ tare- 7 Grid points per processor illustrated for n = 16.

TABLE 2. PERFORMANCE PARAMETERS FOR SOME EARLY HYPERCUBES

JPL
Mark II JPL
hypercube (x8/5 for JPL Mark IIIfp '
parameters Cosmic cube) Mark III (with WEITEK board) NCUBE
teate 25 pus 8 us 0.08 ps 10 ps
Loomm 60 pus 2.5 ps 2.5 ps 13 ps

node has a 4/n by 4/n region of (1/n = 4 in figure 5). For topologies like the hypercube that
include a two-dimensional mesh, the basic algorithm only involves nearest-neighbour
communication and one finds a communication overhead f; given by the characteristic
form

__const. {oomm

Jo = g fomm, (1.2)

cale

where d, in the example of figure 3a d = 2, is the dimension of the system defined generally in
§35. On the early machines where communication and calculation could not be overlapped,
one then finds the speedup § is given as '

S = Ne, » (1.3)
with efficiency € given by e=1/(1+f). ' (1.4)

Table 3 shows some measurements from the Cosmic Cube and Mark II hypercubes which
verify the model of (1.2)—(1.4) (Fox 1985b; Fox et al. 1988). Typically, we have found that for
reasonable values f,nm/tmec S 3 (non-overlapped) or 15 (overlapped communication and
calculation as in Mark IIIfp), the grain size effect (edge over area: 1/n'?) reduces f, to be
negligible so that speedups of order 809, N are regularly obtained. In fact, the success of our

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 421

model has led to complacency and we no longer tend to perform the analyses that led to the
early results of table 3; some recent performance analyses on NCUBE, Mark II and Mark III
have been performed (Chen et al. 1988) for quantum chromody..amics (Flower 1987; Walker
1988), partial differential equations (Walker & Montry 1988), matrices (Aldcroft e al. 1988),
(Hipes & Kuppermann 1988) and the non-binary fast Fourier transform (Aloisio et al.

1987).

(a) , e

speed up

' number of nodes, N

Ficure 6. A comparison of the speedup for the cases of a fixed grain size () and a fixed problem size (). In (a)
the amount of problem in eack node is fixed. The problem size is proportional to N; this is an interesting limit
as we typically want more powerful computers to address larger problems. In '(b) n gets small and
communication and control dominate. The grain size is inversely proportional to N. Our measurements show
speedup of approximately 809, of the number of nodes.

TABLE 3. MEASURED PERFORMANCE OF MARK I AND I HYPERCUBES

(Speed'“P =eN;e=1- l/(‘f(ﬂ)); ‘comm/tcalc = 2‘)
finite element or finite difference two-dimensional, e = 1—1/4/n
€ ~ 909, for 10 x 10 subregion in each node
three-dimensional, e = 1 —1/n
€ ~ 909, for 1000 points in each node

Monte Carlo : ’ 2D melting e~1-5/vn
. . lattice gauge theory, quantum chromodynamics - €~1—0.1/n8
matrix algorithms matrix inversion or multiplication e~1-2/+v/n
_ ‘ matrix eigenvalues e~1—4.5//n
sorting €~ 709 for 2000 items per node

Figure 6 captures one important deduction. The speedup is linear in the number of nodes
for fixed local parameters fyopm, Leare @nd 7; thus, for reasonable hardware (sensible ratio of
toomm/ teare) ONE Will get good speedup as long as the problem is large enough as measured by
its grain size n. This critical grain size is application-dependent but for a given problem,

independent of N, the number of nodes.

(e) Software

The characterization of concurrent computing by the simple map (1.1) is an over-
simplification and in particular one should certainly consider the intermediate complex system
formed by the software of the implementation (Fox 1988¢; Frey & Fox 1988).

Concurrent computation can be more accurately abstracted as

map map

problem + algorithm — software‘ — hardware. o (1.5)

Indeed, we believe that software is the pacing issue in the development of parallel computing
and much greater attention and more funding should be devoted to software. Only when

30-2

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

422 G.C.FOX AND W.FURMANSKI

parallel machines can offer a good selection of real codes addressing major commercial
problems, will there be a large market for our novel architectures.

However, we shall largely ignore the software issues here and our best reason for discussing
other issues is to show how much progress has been made outside the software area and so
highlight the need for corresponding developments in software!

We have in the above assumed an underlying model of computation involving independent
processes communicating via messages. This is natural on distributed-memory machines and
supported by the more general shared-memory architecture. A general approach that uses:
message passing is attractive as a portable programming environment (Fox 19884; Walker &
Fox 1988) and has the advantage of leading to the peak possible performance of shared
memory machines (Fox 1988¢) as discussed in §5. We note that one can show (Fox 1988¢) that
software environments, like decomposing compilers, that appear very different from message
passing to the user have a similar performance analysis to message passing when implemented
to give high performance.

We finish by noting that shared, distributed and hierarchical memories correspond to
different trade offs between ease of construction, cost-performance, typical ‘easy to get
performance’ and peak performance. These issues are discussed in detail in (Frey & Fox 1988),
where we emphasize that software and its ease of development are crucial in evaluating
different architectures.

3. COMPLEX-SYSTEMS AND THE PARTICLE-PROCESS ANALOGY
(a) A complex system

Complex systems have been discussed in Fox ef al. (19865, 1988) and Fox & Otto (1986)
and, for our purposes, consist of a dynamical collection of fundamental entities defined in the
abstract space and time introduced in §1d. We have already introduced the important notion
of mapping complex systems into each other with (1.1) and (1.5) and §3¢ we describe how
temporally regular complex systems can be well described by and mapped into a physical
system of particles. Initially we illustrate another aspect of the theory with a general definition
of the system dimension in §3c.

(b) The system dimension

In Fox & Otto (1986) and Fox et al. (1988) we have introduced a general dimension d which
measures the information flow within a complex system. Essentially we invert (1.2) to define
d by

information or §1—1/d e
[information flowing] calculational 2.1)
through a grain-boundary complexity within
grain

This definition ensures that d; ., is equal to the geometric definition for a local algorithm
defined in physical space of dimension d. In general, d is fractional as the work of Mandelbrot
(1979) on fractals and we can give examples when 4 is either larger than or smaller than the
geometric definition (Fox ef al. 1988). Rent’s rule for circuits which are typically built in two

dimensions shows a dimension d_,,,;, ~ 2-3 (Fox & Otto 1986; Fox et al. 1988 ; Meindl 1987).

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 423

The simple O(N},,,) long-range force algorithm, for say a set of N, gravitating particles, can
be analysed and shown to have d, ., = 1 whatever the underlying geometric dimension. The
definition (2.1) allows our basic formulae (1.2)-(1.4) for communication overhead to have
general applicability and the 4, rangetorce = 1 result illustrates and quantifies in one example
our early result that the multicomputer is not just good for local problems but is quite generally
applicable. This was already seen in figure 5 which shows that f; takes a similar form for local
and next to nearest-neighbour interactions.
In Fox & Otto (1986), we conjectured the constraint

dcomputer > dproblem (2 '2)

to guarantee the validity of the simple form (1.2) with its lack of N dependence and
corresponding implication of figure 6 for the scaling of problems to large, in terms of number
of nodes N, machines.

(¢) The particle-process analogy

In a series of papers (Fox 1986¢; Fox et al. 19865; Fox & Otto 1986; Flower et al. 1988;
Furmanski & Fox 19884) we have introduced a very useful analogy between a physical system
of articles and the set of concurrently executing processes in a parallel computation. We have
also shown how to use simulated annealing and neural network methods in this analogy to find
good explicit realizations of the map given in (1.1). We review this here in a context that allow
its generalization in §7. '

Consider a temporally regular problem; qualitatively this means a system that changes
slowly with time and we will quantify this in §7. For such a problem, one can slice the
computation at a particular instant of time and define an associated complex system defined
by what are called the spatial properties of the problem in §2¢. The complex system is a
collection of entities connected by a computational graph. One can look at the problem at
various grain sizes; depending on one’s needs, these entities could be large processes each
containing many, say n & 1000, degrees of freedom or alternatively one can focus in and
consider the entities as the individual basic degrees of freedom. Figure 7 shows possible
computational graphs with that on the left corresponding to the simple problem discussed in
figure 5. However, more general cases with irregular connections and entities of different sizes
(calculational complexities) can be treated. We now consider the analogy to a physical system

Interconnections
) RN R
-]
el
{ \ 1}

Processor Boundaries

Entities (processes)

Ficure 7. Two computational graphs decomposed onto a (fragment of a) parallel computer. (a) Local regular;
(b) irregular.

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

424 ; - G.C.FOX AND W.FURMANSKI

where the particles correspond to the nodes of the graph, i.e. to the basic computational
entities. We want to define an energy function E for this system such that E is a good
approximation to the total execution time of the underlying problem on our target concurrent
machine. Here we make a crucial but seemingly valid and indeed desirable simplification by
defining ;
. N o
Eox Y C? ' ' - (2.3)
- o ca :

by using a least-squares sum rather than the ‘true’ form -

N :
"E = maxC,. (2.4)
, i t=1: ‘

It is much easier to minimize (2.3) rather than solve the exact mini-max constraint implied
by (2.4). In (2.3), C, is the calculational complexity of particle i and includes the
communication cost.

We now have simple physics analogy with particles moving in a discrete space defined by the
nodes of the concurrent computer. These particles interact with two distinct two-particle
forces. : :

(i) There is a long-range attractive force between any two particles linked in the
computational graph. The associated term of the energy Eis equal to the cost of communicating
the necessary information between nodes to compute the consequences of this link. The form
of this cost is clearly dependent on the particular form of the communication hardware. For
the original simple machines Mark I, IT and III, this cost is linear in the distance (in the
underlying hypercube space) between any two particles linked by the graph.

(ii) The least squares form (2.3) contains a term C, C, if and only if particles and j lie in the
same node. This is clearly interpreted as a repulsive hard-core potential between the particles
which is zero if particles are in different nodes and positive if they are in the same node.

These ideas are shown in figures 8 through 10 which illustrate the solution of a finite element
(FEM) problem by an iterative technique (Flower et al. 1988). The problem is defined by the
irregular mesh of figure 8 which happened to have been produced by NASTRAN to describe
a two-dimensional plate with a crack developing on the symmetry axis; figure 8 only shows the
top half of the plate. Now our particles are the nodal points of the FEM with local interactions
and figure 9 shows a naive equal area decomposition. This leads to grave load imbalance with
many particles in a single node. Simulated annealing (Monte Carlo) methods easily led to the
much improved decomposition of figure 10. Now each processor has an approximately equal
number of particles and communication costs have been respected by plécing connected (and
as square as possible) regions in each node. We have also used neural network methods to
address this and similar problerﬂs with success (Furmanski & Fox 1988a; Fox 1986¢). Note
that we are not trying to find the best solution but just a reasonably good one. Neural networks
are good for such approximate optimizations and one can show that the time taken to find a
decomposition is of order M lg M for a system of size M. We should also note that either the
annealing or neural algorithms can be implemented concurrently and so both the problem and
its decomposition can be performed concurrently on the same machine with comparable
speedups of order N.

We are currently implementing these ideas (Kolawa et al. 1987; Koller 1988) as a dynamical
load balancer and decomposer that will run under the multitasking operating MOOSE
(Salmon et al. 1988) implemented on the INTEL iPSC hybercube. Here the user is responsible

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 425

<
= CRACK
—HHP
/ \
{]
j\ //

FiGure 8. A 544 point mesh of nodal points generated by NASTRAN for a sample two-dimensional finite
~ element problem (Flower et al. 1988). We intend to solve this by iterative (conjugate gradient) methods.

WORKLOAD

J- 121
~— PROCESSOR

FIGURE 8. A simple two-dimensional equal-area decomposition onto a 16 node hypercube of the problem
_defined in figure 8. Minimum load, 32; maximum load, 36.

for defining the computational graph and the nodal weights C;; the load balancer running itself
as a concurrent collection of N processes then rebalances the load by moving processes as
necessary between nodes. This dynamical implementation needs additional terms in E
corresponding to the cost of moving processes but this is a straightforward extension (Kolawa
et al. 1987).

http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

426 G.C.FOX AND W.FURMANSKI

Y 4

} workLoaD —

Minimum load = 6
Maximum load = 331

/_/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

gL =1 |l 1T}t —T1]
——= PROCESSOR

Ficure 10. A single two-dimensional equal area decomposition onto a 16 node hypercube of the problem
defined in figure 8. Minimum load, 6; maximum load, 331.

We have also shown in Fox et al. (1986 4) and Fox & Otto (1986) how this physics analogy
can be carried further to show phase transitions and a general definition of temperature
associated with the underlying complex system.

4. COMMUNICATION STRATEGIES ON THE HYPERCUBE

This section is somewhat of an aside and is designed to provide background motivation for
aspects of §7. It summarizes research that is described in more detail in Fox et al. (1988),
Furmanski & Fox (19874,b, 19885, ¢), Ho & Johnsson (19864, b), Johnsson & Ho (1988),
Stout & Wager (19874, b). The partial differential equation problem shown in figure 5 is
particularly simple to solve as it could be implemented with just local node to node
communication on the hypercube. Consider a general convolution of the form

&(y) = G(x,y;/(x)), (3.1)

where the function g(y) is given by a functional G operating on a function f(x). Here x and y
are typically both variables to be decomposed spatially over the nodes of the hypercube. In our
partial differential equation, y and x are identical; f(x) = ¢,(%) and g(y) is the new iteration
of the potential ¢,,,(y). The special properties of the local laplacian that gives G in this case
allows one to arrange the decompositions of x and y so that the calculation of (3.1) only involves
local communication. This is often not true and one cannot arrange x and y to have such easily
related decompositions. Then the concurrent calculation of (3.1) will involve non-trivial
communication algorithms which can either be found manually or given automatically by the
techniques of §3¢. A particularly good example of this is the calculation of the FFT in either its
binary or especially non-binary form (Fox et al. 1988a; Aloisio ef al. 1987). Matrix algorithms
also give rise to these complex communication patterns and were the original motivation for
our work on this subject (Furmanski & Fox 19864, 1988). We have also shown how the
simulation of various (neural) networks need different communication strategies depending on
the richness and regularity of the network being simulated (Bower ef al. 1987; Furmanski &
Fox 1987). '

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 427

A reasonably complete survey of the algorithms will be found in Fox et al. (19884) and
Furmanski & Fox (19874, 19885), and here we will briefly discuss three particular cases.

 The fold algorithm

- This is a very important algorithm (Fox unpublished results, C*P-173; Cisneros unpublished
results, C*P-199), which is central to the optimal implementation of matrix vector multiplication

v=Mx ‘ (3.2)

on the hypercube. Here x and v are vectors and M is a full matrix. Another application of fold
is to the simulation of the piriform cortex; this biological network has an essentially complete
interconnect (Bower ¢t al. 1988). An even simpler case for fold is the concurrent computation
of what would be two nested DO loops in the equivalent sequential FORTRAN code; namely for
large N1, N2 greater than about the number of nodes N, consider the calculation

DO1I=1, N1 (3.3)
A(I)=0.

D02J =1, N2

2A(I)=A(I)+B(I,Jd)

1Continue

Here I and J are presumed to be variables that are both uniformly decomposed over the
nodes of the hypercube. Problems like that of (3.3) will clearly occur quite often when
sequential code is automatically decomposed onto a hypercube or other multicomputer.

The general problem is the calculation of many global sums. It is well known that a single
global sum; for instance '

X=0. G (34)
DO1J =1, N2 '
1X=X4+C(J)

with J uniformly decomposed over the hypercube, is optimally calculated by forming a binary
tree and naturally mapping this onto the cube. fold must take several (N1) such trees and carefully
decompose them on the hypercube to minimize overlap and 'so minimize the resultant
execution time. The best solution is known for arbitrary value of N1 and is shown in figure 11
for N1l =N2=N=4.

(b) The crystal_router algorithm

This addresses a generalized travelling salesman problem of the type faced every day by
London Transport on the underground or the U.S. Military air command as it shuffles
servicemen from one base to another. In its hypercube realization, one has a set of messages
(passengers) on each node and each passenger has a ticket which specifies the number of one
or more distinct destination nodes. This is the general data-shuffling problem and this is, for
instance, the underlying communication problem in our concurrent missile tracker (Gottschalk
1987) and non-binary Frr (Aloisio ef al. 1987) algorithms. The crystal_router addresses the case
where each passenger has a ticket to a single node and it provides a deterministic algorithm that
can be shown to be optimal when information is uniformly spread throughout the nodes. Each
passenger (message) is sent on a geodesic or shortest path on the hypercube (Fox et al. 1988;
Furmanski & Fox 19874, 19885).

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

428 . G.C.FOX AND W.FURMANSKI

(c) lee crystal accumulator algorithm

This algorithm (Fox et al. 1988; Furmanskl & Fox 19875) addrcsscs problems half way
between those of §4 (2) and (¢) and is typified by the solution of (3.2) where M is not full but
rather sparse and irregular. Now the passengers are the contributions of Mx|, to a particular
y, from a given node and their ‘ticket specifies the destination i where the sum g, is to be
accumulated. Now we get an algorithm like the crystal_router except that as shown in figure 11
for fold, passengers arriving at the same intermediate station (node) with the same ticket 7 are
combined and only a single summed result is transmitted. Note that this is an idea analogous
to that of combining switches for shared memory machines (Gottlieb 1987) but one needs more
general combining operations than usually env1saged in particular, floating pomt addition in
the above example. -~ =

LABEL OF SUM

0.

y space
1
o

Figure 11. An example of the fold algorithm for N1 = N2 = N = 4. Here N2 is the number of entities in each sum.
N2 > 4 would be illustrated by a similar figure with each node calculating a component of the sum over J in
(3.3) local to each node. Then the figure shows how these precalculated components are summed. The double-
headed arrow represents one time interval; this is assumed to be the same for calculatxon and commumcatlon

. A means addition; otherwise wait for commumcatlon

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 429

(d) Genemlzzatzons

In §6, we will mtroduce powerful techniques that rcproducc these algorithms in the cases we
have derived them analytically. However, the new techniques will optlmlze the algorlthms for
cases of irregular traffic and for arbitrary architectures of the target concurrcnt computer.

i

: 5. THE EFFECTS OF HIERARCHICAL MEMORY !
(a) The a'ualzty between memory structure of the computer and space-time structure of the problem

Up to now, we have essentially addressed the spatlal properties of problcms and their
mapping onto the spatial structure of the computer. In the remaining three major sections, we |
shall discuss some more recent results on the temporal aspects of problems. First, we will review
the analysis of Fox (1988¢) and Frey & Fox (1988) concerning memory hierarchy. We first
note that this is very directly related to an analysis of shared memory architectures because
high-performance machines of this shared memory class need a fast cache or local memory to
buffer data from the slow shared memory. Wewill use the term ‘cache’ to refer interchangeably
to a true hardware controlled cache or a user or software controlled fast local memory.

We have already decomposed problems into parts designed to minimize communication
between them. This was the subject of §2 and is essentially all that is necessary to obtain good
performance from machines like the NCUBE or Transputer arrays. We will use the same idea
for hierarchical memories and divide the problem into parts (grains) so that each grain fitsinto
the lowest level of the memory hierarchy. This is shown in figures 12 and 13 for shared-memory
machines, hierarchical multicomputers and the simpler homogeneous multicomputer. In

(") 'SHARED MEMORY USED

AS A COMMUN!CATI_ON BUFFER

-. B . - ses . o . ICAWE'
| mmmw - ®m m EH EH|
LT R
* * : SHARED MEMORY
USED FOR WAITING (VIRTUAL) OBJECTS
AND AS COMMUNICATION BUFFER
tmem o i
—_—
tca!c -
— |H| (B} W] ... W] E 'CACHE'

Ficure 12. Shared or hierarchical memory computers showing the total problem divided into parts or processes
that individually fit into the ‘caches’. In (a), the total problem fits into the ‘caches’; if the total memory needed
equals the total memory in the ‘caches’ 3 then there is one object per ‘cache’. () Shows the general case where
the processes are held in the (slow) main memory and need to be cycled through the ‘caches’. A sequentxal
vector processor is a spec1al case of this. ‘Cache’ represents cache or local memory; m, fundamental unit
(process or grain), fits into lowest level of memory hierarchy.

http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Y 4

LI=LI=LI=L]

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

430 ' G.C.FOX AND W.FURMANSKI
____— PROCESS
) U 'SPACE’ B W
. . . (1] - (1]
"TIME- | T
] | | W | — 'CACHE: |m
___ COMMUNICATION
PU CPU CHANNELS
[|]]
]
- - -] Em
. as - as
L 1
]]

Fn [

Ficure 13. An illustration of distributed memory multicomputers. (a) Horﬁogéneous multicomputer, purely
spatial decomposition; (4) hierarchical multicomputer, spatial and temporal decomposition.

figure 124, we see a simple special case where the total problem will fit into the caches when
summed over the nodes. Then the global shared memory can just be used as a communication
path and one can easily see that the overheads take the same form as (1.2) with ¢, replacing
teomm- Here t.. was already shown in figure 4 and is defined as the time taken to read and
write a word between the two levels of the memory hierarchy. However, in the general case,
shown in figure 12 b, one may fill the caches with grains but there are still other (virtual) grains
waiting in the shared memory to be executed. Figure 135 shows how this looks for a
hierarchical hypercube where we note the grain size is defined by the cache size and not by the
total node memory. In Fox (1988¢), there is a detailed analysis of the extra overhead needed
for the cases of figures 124 and 134 to swap the grains in between the two memory levels. The
essential idea is contained in figure 14 which shows that the overhead f; is proportional to
tmem/tee divided by the average temporal size of the grain. On general principles,
communication proportional to ¢, is associated with the spatial and that proportional to
tmem 1S associated with the temporal properties of the problem.

H N foomm H N

{mem

g n&\\\\\
.
8
[+)

FiGurE 14. A summary of the overheads associated with hierarchical memory;
d is the system dimension introduced in §35.

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 431

(b) A universal decomposition methodology

These resulis leads to a universal decomposition methodology which we call the method of
space-time blocking. For homogeneous multicomputers one only needs to divide the problem
into local spatial blocks. This is a special case of a more general and difficult technique which
divides the full space-time structure of the problem into blocks. This idea is shown in figure 15
for a very simple one-dimensional partial differential equation. One can also illustrate this idea
with the BLAS-3 project introduced by Dongarra (Dongarra et al. 1987; Dongarra 1988).
Their well-formed strategy of using matrix-matrix and not matrix—vector suboperations is
precisely the implementation of space-time blocking for this problem. Although initially
introduced for shared and hierarchical memory machines, the BLAS-3 idea is the correct basis
for a universal library of full matrix operations across all the architectures of §2 (b).

Time

RBoundary of a Complex System

LU D D D
Q.Q...\.0000..\..0....0\...
grain #1 — grain #2 R grain #3 —
Space

Ficure 15. Decompositions for the concurrent one-dimensional wave equation. (z) A purely spatial blocking; a
high edge:area ratio in the time direction. () Space-time blocking; a better edge:area ratio with modest
communication. (c) Space-time blocking; a more practical space-time decomposition with more com-
munication.

We see that all high-performance computers appear to need locality to achieve their
performance. This is spatial locality for homogeneous hypercubes but more general
architectures exploit locality in space and time. We remind the reader that we are using space
and time in the general sense defined in §2¢ for arbitrary problems. We are currently
investigating at Caltech the possibility of combining these general decomposition ideas with
simple portable message passing software to generate a portable environment across many
machines. Currently we are targetting a system spanning four machines: hierarchical shared
memory ETA-10 and CRAY-2; the homogeneous hypercube, the NCUBE; the hierarchical
hypercube and the JPL Mark IIIfp (Walker & Fox 1988).

We should note that we have only explicitly discussed MiMp machines above. The siMD
machines would be analysed similarly to the homogeneous multicomputers with the additional
restriction explored in §5 that problems allow synchronous execution. We should also note a
possibly controversial deduction from this section. Thus, the homogeneous machines,
multicomputers like the NCUBE and smMp, machines like the CM-2 are the easiest on which

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

432 » : G.C.FOX AND W.FURMANSKI

to achieve high performance as one only needs a simple spatial decomposition. This is explored
in (Frey & Fox 1988) where we contrast peak performance with ‘good but not peak
performance that is easy to get’ where the hierarchical machines excel. I believe that it may
turn out that homogeneous computers may supplant those of hierarchical mcmory as the future
systems of choice. i ‘ : :

6. WHAT PROBLEMS PERFORM WELL ON MACHINES WITH MANY NODES?

We have recently realized that there are some simple characteristics of the problems that
have performed well in our hypercube experiments and the many other applications on the
DAP, Connection' Machine, Butterfly and other machines with large numbers of nodes.
We want to clarify the problem classes for which the optimistic speedup results sketched in
figure 6 will apply. The two problem classes which have currently been shown to run well on
MIMD machines are:

(a) loosely synchronous large problems;

(b) asynchronous but spatially dlsconnectcd large problems.

On the other hand:

(¢) asynchronous but spatially connected problems have not been shown to scale and get
good performance or machines with many nodes.

Let us examine the classifications introduced above. Large and spatially disconnected—
connected describe the spatial properties of a problem. Large has already been quantified by
the grain size analysis of §24 and its extension of §5. Spatially connected problems are like
those shown in figure 7 with many non-trivial links in the computational graphs. Spatially
disconnected systems are sometimes called ‘embarrassingly parallel’ and are typified by
problems coming from data analysis, say in high-energy physics. Here one has a system with
often as many as 107 entities which are individual scattering events recorded on tape.
Parallelism is achieved in the data analysis by processing each event on a separate node. Such
problems are asynchronous'because each event is different and there is a wide variation of
processing times. This prevents synchronization between nodes but this is irrelevant due to lack
of connection, i.e. spatial disconnection, between the entities. This could be contrasted with
event-driven simulations and some database problems where there are a large collection of
asynchronous events which are, however, connected in a complex fashion. A similar situation
occurs in our hypercube implementation of computer chess (Felten ef al. 1986) where the a—8
pruning relates the search of different lines of play. It is not clear if event-driven simulations
and related problems can achieve large speedups although many ingenious methods are being
explored (Jefferson & Sowizral 1985; Chandy & Misra 1987). :

Finally, we need to return to the most important category (a) where we need to define loose
synchronization. This essentially says that there is a single natural temporal label to cover the
entire spatial domain. In a physical simulation, one evolves a system from time ¢ to time ¢+ 8¢.
The different grains are labelled by the same time variable and can separately step in time
without a complicated synchronization procedure. Another description of loosely synchronous
is that of macroscopic synchronization. The grains synchronize every now and then i.e. at
to ty+8t,£,+20¢, etc. but in between these synchronization points are free to calculate
independently. Using the generalized definition of time given in §2¢ one will find the vast
majority of successful highly parallel implementations are loosely synchronous. We emphasize

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 433

that we make no claims that this is a necessary condition, and indeed category (b) is a separate
scaleable class, but it is a convenient classification for which our successes are intuitively
clear. . ; ;

- We can now further strengthen the condition of loose synchronicity to that of microscopic
synchronization. This leads to synchronous problems for which each grain can execute in
lockstep. This is clearly the subcategory of problems for which the siMp machines are
appropriate. The division of problems into synchronous against loosely synchronous has not
been carefully studied. It would appear that the loosely synchronous subcategory is at least for
university applications quite a sizeable part (more than about 509%?) of the loosely
synchronous category. We can expect that commercial applications to have greater
irregularities and a lower percentage of synchronous problems.

7. A THEORY OF INTERACTING STRINGS AND ITS APPLICATION TO COMPUTATION
(a) The string formalism '

In §3 we introduced a particle process analogy which we said rather vaguely was
appropriate for temporally regular problems. This is easily defined by illustrating the two
classes of problems for which the analogy fails. The first is the general communication
algorithms of §4 in which information flows on a fine timescale through the computer network.
These are usually loosely synchronous and indeed often synchronous problems but they are
microscopically dynamic. The other major category for which the formalism of §3 fails is the
very interesting asynchronous spatially connected problems discussed in §6. Event-driven
simulations and real-time control of, say, robots fall into this important class. Thus, we see that
the results of § 3 can be applied to loosely synchronous, microscopically static problems and the
goal of this section is to generalize these ideas to the problems with asynchronous or
microscopically dynamic temporal properties. As usual, we use the label temporal in the sense
of §2¢ to describe the computational label of the problem.

The natural formalism for time dependent graphs seems to be that of ‘strings’ or ‘world
lines’ rather than the ‘particles’ used in §3. In the routing case of §44 the string formulation
is particularly simple: the problem reduces to deriving the set of strings or particle trajectories
with fixed end-points and the mini-max length constraint. The detailed solution for a given
concurrent architecture should be consistent with the specific hardware characteristics like
memory per node capacity, channel bandwidth, etc. More generally, strings may interact by
coalescing or branching; they may be created and annihilated.

We can also consider the string language for the fold problem of §4a which mathematically
calculates concurrently

u=xv, - (6.1)
J

where, as in §4, ¢ and j are both distributed over the nodes. We only know the optimal
algorithm analytically for special underlying machines topologies, in particular the hypercube,
and so a general approach to even this simple problem is of interest for other architectures and
irregular distributions of v{”. In the string formulation, one could try to abstract the essential
elements of the known analytic algorithms for (6.1) in the form of some more general ‘string
dynamics’ by introducing an attractive force between strings v’ o{’¥, j; # j, (to minimize
routing for components of the same sum), 3-particle vertices corresponding to forming partial

http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

434 G.C.FOX AND W.FURMANSKI

sums and the repulsive force between different strings vf!? o{!?, i, # 4, (to load balance the
summation trees).

In general, the interaction formulae in vertices may be much more complex (non-
commutative) and time-dependent by itself. For instance, in an event-driven simulation, the
update of a given process P(P— P’) may be accomplished only after receiving some additional
information / from some other process £, which would correspond to time-dependent vertices
Fy— FB,+1,P+1—- P, connected by the string I corresponding to the message.

Taken in its full generality, the language of interacting strings is as complete and indeed as
intractable as the ‘general theory of computation’. Indeed, associating string segments with the
processor MOVE or LOAD operations and vertices with all elementary ADD, MULT,
SHIFT, etc. operations, one can map any computer program (and hence, any problem) onto
the system of interacting strings defined by the registers and memory world lines.

Although the problem of concurrent decomposition, when addressed in this most general
‘atomic’ form seems to be highly unrealistic, the fundamental aspect of the string language for
distributed computation is, nevertheless, worth stressing. We will need to specialize the
application or approximate the general formalism to generate a theory of practical value. Qur
aim in the remainder of this section is to address the general issue of the ‘string dynamics’ and
to start quantifying it for the simplest instances of dynamic computation.

In figure 16, we show how the problem of §3 is viewed in this new formalism. Message strings
are passed between two given processes represented by strings ¢; and i,. However, the
microscopic static property ensures that ¢, and i, are essentially fixed or rather change slowly
with respect to the natural timescale of the computer. We see that one can generally re-
interpret the message strings as a force which we can amusingly consider having as its quantum,
the basic message packet.

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

i i

)\ 4
SYNCHRONIZATION l><l CAN BE
POINT THOUGHT OF

- — —
AS > force
, 7 3 ' §
<
= P
< 'TIME' 1 P2 P1 P2
P
O : ——» 'SPACE'
= — Ficure 16. The microscopically static strings and their reduction to the particle picture of §3.
= O P, and P, label strings thought of as particles.
LT O
= uw

(b) The strings as dynamical variables

Our basic strategy is to formulate the computational problem in the string language, to
construct an appropriate cost—energy function in string variables and to derive the optimal
arrangement by minimizing the string functional. The details depend on both the minimization
technique and the string representation.

The combinational optimization typically reduces to the problem of satisfying the set of

PHILOSOPHICAL
TRANSACTIONS
OF

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 435

" constraints imposed either in a rigorous analytic form, like in the simulated annealing approach
(Flower et al. 1988), or in the neural network (Furmanski & Fox 19884) weak form just as for
the simpler problems in §3. In the neural method, the search is performed over much broader
phase space and the proper syntax is achieved only at the fixed point of the network. In
consequence, many unwanted minima of the cost function are smeared over and the reasonable
results can be obtained without the expensive annealing procedure. For the string, this
distinction is even more sharp because the string itself is usually defined by a set of constraints.
In the neural approach, strings appear as ‘fuzzy’ objects without definite localization or
orientation until the stationary point is reached. In this sense, our neural approach is very
similar to the method used by Hopfield & Tank (1986) for the ‘travelling salesman’ problem.

The advantage of neural net techniques is that one can satisfy simultaneously a large set of
constraints by means of a relatively simple local algorithm, admitting both an analogue
hardware implementation and concurrent implementation on conventional parallel machines.

In the rigorous strictly digital approach, one would work with explicit string representation
in all stages of the algorithms, constructing the usual local moves in the string space by acting
with the ‘plaquette’ operations as illustrated in figure 17. This, when applied with the
conventional Metropolis algorithm, may result in very accurate solutions but can be expected
to be much slower than the neural network approach.

ORIGINAL . NEW
LOCAL
CHANGEBY
TIME PLAQUETTE
—ee

SPACE CURRENT STRING BECOMES NEW i’

Ficure 17. The Monte Carlo or Metropolis approach to the computaﬁoﬁal string dynamics. ‘

Below, we discuss typical energy functions in string variables. It will be convenient to use two
complementary representations of a string:
' (a) global representation, where the string is given by a set of adjacent space-time locations,

S(x0; (6.2)

() local representation, where the string is given by a set of moves between adjacent
points, o
' my(x,t;y,t+1). (6.3)
In both cases, i labels a given string or process, x is the node number, ¢ is the discrete time
label and § =0, 1(m = 0,1) depending on whethcr or not the string ¢ is at point x at time ¢
(moves from x to y at time ¢.)

31 Vol. 326. A

http://rsta.royalsocietypublishing.org/

A \
l B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V am ©

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

436 : G.C.FOX AND W.FURMANSKI

We will restrict ourselves to a simple multicomputer and denote by 4,, the arcs (links) of the
machine topology, i.e. 4,, =1 if nodes x,y are connected and 4,, = 0 otherwise (we take
4,,=1). Within this topology, we define the metric D,, as the minimal numbers of
steps (channels), necessary to move from x to y. : :

The variables S, m, 4 are related as follows:

3 Apy Si(%,8) m(x, 153, t41) Sy t4+1) = 1. | o (64)
xy .

The above string constraint is automatically satisfied by ‘plaquette’ moves, whereas in the
neural method it enters as a syntax enforcing term to the cost or energy function.

" Below, we present a few typical characteristics of a computatlon, expressed in the string
variables, and useful for building the energy functions.

String length, ‘ ; ‘
| Li=3% A4, 8,(x 0 8(y,t+1); ~ (659)

zyt .
load pér node, W) =3 8, 0); 1 | ; (6.55)
channel congestion, C,,(t)=24,, m,(x,t;y;t+1); - (6.5¢)
A 4 ’ ’

linear potential between strings,

Fy() = X Si(x,8) Dy Si(9,8); (6.54)
z,¥ .
vertex i+j—>i(i <j),
MV(x, 1) = 2 8,(x,1) §(x,£) [1 = S,(x, ¢+ 1)]; (6.5¢)
i<g
sink (external field) with x* = destination node,
E() =Z8(x,0) D, 05 (6.5)
particle (string) conservation, ’
B(t) =% 8,(x,¢) = 1. (6.5g)

Thus a possible string action for the routirig problém of §34 could look as follows:

E uing = A2 L; (minimal length)
‘ +B 2 W2(x,t) (load balancc)

- +C Z Cpy(t) (channel balance)

zyt

+D Z E(t) (destination)

+X ((t)—1)? (conservation) |
+ string syntax enforcing terms. (6.6)

The action for vector sum fold of §3(a) would contain additional linear force terms F,
attractive within a given tree, repulsive for different trees and the vertex terms V(x, 7). In the
latter, the higher index string S; is annihilated whenever two strings §;, ;i < j meet in the same

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 437

node. For this reason, the particle conservation term should be relaxed, for example, to the
following form of ‘string continuity’

Z (RO —RE+1))*, | (6.7)

which allows for string annihilation but ensures this is not done ‘unnecessarily’ but penalizes
in the energy function changes in the numbers of strings.

(¢) Real-time neural controller

In the approach discussed in the previous section, strings appear ‘as a whole’, i.e. the output
of the minimization procedure consists of the complete set of all strings in the global time
interval. This strategy is useful for dynamical problems with static or slowly varying
computational goal, i.e. when the global string layout can be planned independently on the
results of intermediate computations. For difficult time-dependent problems such as games,
event-driven simulations, etc. such a global strategy is useless because the communication
routes have to be continuously adjusted according to the varying environment.

A possible approach for such problems is to design a real-time controller, capable of planning
the forthcoming action for next few ‘moves’ ahead. The neural net technique, with its ability
of providing a quick rough guess, seems to be particularly appropriate here.

We will illustrate this method on the example of the routing problem again, but now with
possibly time-dependent destination nodes n* = n*(f). For definiteness, we will use hypercube
topology. It will be convenient to work with the string move variables m, where a = 0,1, ...,
d—1 is the communication channel (cube addressing bit) of the d-dimensional hypercube. The
limited goal of the following real time algorithm is to predict the correct set of moves m, one
time step ahead, given the current string positions n(i, £) and the currently expected destination
nodes n*(i, t).

One can imagine the complete algorithm as composed of a set of consecutive computation-
control time slices in which processes move to the destination nodes but their location mlght
be changed during each computational slice. ‘

The simplest solution is provided by the crystal_router algorithm, dlscussed in §354. The
performance of this which is optimal for homogeneous distributions, however, deteriorates
substantially in the non-uniform case. Thus in the pipe-dominated configuration (all processes
have the common initial and final nodes), the crystal_router deteriorates by a factor log, N
compared to the best algorithm. :

In the general-purpose, heavily used routing algonthm one would like to achleve a general
trade-off between the Hamming distance (for a hypercube) minimization and fan-out-load
balancing.

The action for a simple neural router algorithm could look as follows:

E uratrouter = 4 Z o (i)m,0;(i)+B 2 H {1—0,(1) 9.(5) m, (i) m ()}, (6.8)

i,

where o,, 0¥ are the hypercube bits of the current and destination nodes 7,() and n*(z)
1 140*
(i) = 2 (L‘z’—(—)) nQ) = % 2«(% (‘)). L (69)

The energy is to mmlmlzed as a function of the move variables m,, whereas o‘a,La ¥ play the
role of time-varying external fields, taken at the current time slice. :

31-2

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

438 G.C.FOX AND W.FURMANSKI

The first term in (6.8) attracts to the destination node n*, the second term constructed in a
similar way as in the static algorithm of Furmanski & Fox (1988a), takes care of the load
balance after the current move.

The evolution equation implied by (6.8) is:

@) = T{40.0 02() =B 3 0. i) 0 (6.10)
where the process j(z) shares the current node with the process i. 7 is the usual nonlinear
transfer function in neural networks (typical functional forms are T ~ tanh or 7'~ @). The
equation m, & 1(—1) indicates if the move is to be done (or not done). As seen from (6.10) the
neural algorithm simply reduces to the crystal_router for the choice B = 0. The additional terms
for B = 0 assures the appropriate fan-out for inhomogeneous initial distribution.

In a similar way, we can construct the neural version of the fold or, more generally, of the
crystal_accumulator algorithm. As discussed in §4 4, ¢, the string structure for this problem is given
by the set of trees, distributed over the processors and rooted in appropriate destination
nodes.

We will associate the indices 7, j with the processes (strings) as in the neural router example
above and we will label individual trees by the index 7 so that, for example, 7(7) is the tree label
of the process i. All processes ¢ with a given value 7(z) should be directed to the common
destination node n* and the corresponding strings should be combined, i.e. any two strings
i, J such that 7(7) = 7(j), arriving at some common intermediate node should form a vertex as
in figure 11.

Because the process number is not conserved now, some consistent time-dependent labelling
mode should be chosen. The simple scheme is to always annihilate the process with the higher
index, say j for ¢ < j and to retain the lower index, here 7, using it to label the combined process
(see (6.5¢)). '

To enforce the combining action, we can add the attractive force between any string pair
i, j belonging to the common tree (7(i) # 7(J)), while retaining the repulsive, load-balancing
force as in (6.10) for strings from different trees (7(7) # 7(j)). The resulting network evolution
equation looks as follows: '

myv (1) = T{Ao‘a(i) o¥(i) (sink—destination node) , (6.11)

—B Y o,()0,(j)m?(j) (string repulsion-load balance)
ORITERID) v

+C XY o,()0,(j)m?(j) (string attraction—combinc)};
1 (=109

as before, j(i) label strings sharing a node with i at the current time.

(d) Numerical results

We performed some simple numerical experiments with the network formulae in (6.10) and
(6.11). The preliminary results, presented in figures 18-21 and discussed below are mainly of
an illustrative character; more work is required to rigorously quantify the network performance
and its dependence on parameter values. »

The neural_accumulator network was tested for the 16-node hypercube. The non-zero elements
of the vectors to be summed over (combined) were sampled randomly with some fixed overall

http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 439

(|
£ [3’53’%‘;
4 T 4
R ' R, {
— o —mmmm = i- S UL S
r:od : PIPE
Lu U | i 1]] — i
= O 0) 1 6
Hw d=log, N

Ficure 18. The communication time for diagonal transfers as function of the hypercube dimension showing the
optimal (pipe), static general purpose (crystal_router) and dynamic general purpose (reural_router). The variations
in the choice of A,B in (6)—(10) are reflected in the error bars as is the variation with M, the number of
messages. Communication time is approximately a(N) M; a(N) = log, N(crystal_router) ~ 2.5(neural_router) =

1 (pipe).

n labels processor nodes -
2 3 4 6 6 7 8 9 10 11 12 13 14 15

PHILOSOPHICAL
TRANSACTIONS
OF

3
Il
(=]
—

WA T O, EVCFED RORH: T ;nwllﬂl} (T, GEERR W | ;:.n. TR T VLT {F?]’iﬁ?:
m\ I, O, OO, LD RO GO O I AL, I |\ A ‘mumm
{ LTSNS
il llli N
: @Mnm uumlw | [l w TETIT O O] FENEE YT
| II <Ll — Tl .
i L] lﬂ *
=11
[y T

§ i ' ' Destination
2 il
= | A b M i
A T =

e . [~3n .

<L T) e T T O

- T —

< - HE A R T | I Source

s el

@) i T, T, TN GV, G,) K b I

=2

O TR O O g e g

E 9) Ficure 19. The flow of information given by the neural_router given for the problem of transmitting M = 16 messages

from node 0 to node 15 across 2 longest diagonal of a 16 node (dimension 4) hypercube.

fraction (probability) f of non-zero elements. The resulting performance is plotted against fin
figure 21 and compared with the performance of the corresponding analytic algorithms: fold
and crystal router. An example of the data flow for some particular run (with f=0.5) is
presented in figure 20. The network equations (6.11) were applied with the fixed values of the
parameters 4, B, C.

PHILOSOPHICAL
TRANSACTIONS
OF

http://rsta.royalsocietypublishing.org/

n labels processor nodes -

" G.C.FOX AND W.FURMANSKI

Downloaded from rsta.royalsocietypublishing.org

440

= e L O
. 54 EE
ikel: R
v > o >
£, 83)
-]
= = ..IrH»”.\INI.I.ﬂs - |Md a8
0 ﬂﬂcjllmnwlm = »w =3 sy
= rdb”:dlmsll.l = o mm ..M] -m g =
R (] (] = m [~
’f'ﬂﬂ%< Wi w - a I'E o o . o &3
X ﬂ..;l!lxamm,/f// -ds.mﬂle O =:3 \ ET - a7
o §. \ <€ h.mn\o(u
w BE ode & s
g [} l s Qg
© 3% \ fa s ES
8.‘!.”v = s \ © 8
o a 2+ \ S w2 8
o - EE=Q
= o » 8 w5 s \ s 185 34§
N \—-—r— ~ © \ \] R
ic»—u.mu...ljr'\llll. “ @ \ \ m [-m a.
b bl . IR J
mm \ 0I0|z|/0 8 N ,m .m..ce.m
@ \ [o ©oE
e 8 i - L
SF 3\ \ g o & 38
T =) \ ..4.'.. 3 -4 < oSS)
5.9 -] © 3 o g
SE \ \ - EB2s
3 (7] =
S8 \ ® /;O / ° < m.b.m
B =]
§° / N /\ - o mﬂm
S 2 \ \ 5 &9 g
s \ N g o]
S .8 NN 43 2% 3E%
g \ \ S &G >
S N S
V.O . N\ = ﬂa%
b__ (=] N\ \ o lur
5% s N o 1 © 68
el : 330
.mm = N N\ h aw.u
g.m m - // N . a.hm
§ w 3 e X ¢—eoeo J3 TE5
8.8 o 3 N < Weﬁ
g [=} R E g
g S -] 4 N =3
E g =l —l (N Lao
S]) \ 5.8
g o - - - «w &
s o 7] 17 N S s .5
mmp.h W. w N\ gem
=1 (3] Q .mmt
g 2 _ 1 ESZ
. = o o =) o & E
l\\\hﬂ’l~ll N — 5] [T
= AT 25 ” N E2E8
i ulv:»kvn\lfm = n P Wl UCHEITUNWIWIOD HoE3
s =3 = o s 2y ~STF
uoneIANT > & g g Ng o §
H : P -m Wee 3 S
g3 % 30 S
=) =)
e]
=3} <3

/. ALIIDOS 10 /. ALIIDOS 10
Y RO BLLLL ST RN AL b

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 441

As seen in figure 20, the network accomplished the requested summation task in the single
sweep through all channels up to two mistakes (nodes 3, 12). This type and size of error seems
to be typical and difficult to avoid when running the network with fixed values of parameters.
The load balancing and the string attraction forces, useful in the first stage of the algorithm,
start generating errors in the second, more ‘deterministic’ stage when the statistical-neural
methods become too crude. Clearly, these ‘errors’ can be cleared up in a fast deterministic final
step but we have not explored this.

In the neural router case, we tried different strategy. The algorithm was applied twme in the
first step, the load balancing term was set on, resulting in the desired fan-out of processes, in
the second part it was switched off and only the deterministic sink term was retained, resulting
in the exact final result.

This simplified ‘annealing’-type strategy resulted in quite satisfactory performance. The
algorithm automatically reproduces the crystal_router strategy in the cases where this is optimal.
We present here the numerical results for the inhomogeneous routing case, particularly difficult
for the crystal_router algorithm: the whole vector (of size M), originally in node n = 0 is to be
moved to the most distant node (n = N—1 on an N-node hypercube). The optimal analytic
algorithm (pipe) would take time T,o,, ~ M to perform this' transfer, the crystalrouter
performance is T ~ log, NM, whereas the results for the neural router are shoyz‘:l in figure 19.
The numerical values are close to the simple analytic estimate 7y, ~ 2M (T o ~ M to fan-
out, T,,.m ~ M to fan-in). The data flow for the special case M = N on 16-node is presented
in figure 18. In the first stage of the algorithm, one can observe the dominant route, driven by
the sink term and the fan-out component, enforced by the string repulsive—load balancing
term.

The error bars in ﬁgures 19 and 21 show the typical spread of the results obtalned by
varying the network and/or problem parameters in some ‘reasonable’ range.

In summary, our preliminary results seem to be promising ; we have found that the proposed
neural communication algorithms are capable of reproducing and sometimes even improving
upon the performance of known analytic algorithms for the discussed tasks. More work is
required to analyse the parameter sensitivity, the various ‘annealing’ modes, and extension of
the technique to other, more complex problems.

8. CONCLUSIONS

We have tried to show that not only have many problems been successfully run on many
parallel machines but also that we are beginning to understand the issues that determine both
the performance and optimal decomposition of problems. We have used a complex system
framework with a general space-time analogy leading to a seemingly powerful theory of
computation based on interacting strings. We have seen that three rather different
architectures, the multicomputer, shared memory, and siMp computer, are all very viable
high-performance parallel machines. We have not treated dataflow or systolic arrays and we
must leave them to the future to explore these interesting architectures within our framework.
Further, the whole and perhaps crucial issue of software ,has been ignored; this also needs
further work. :

We expect that the theory of mteractmg stnngs proposed in §6 has many apphcatlons in
parallel supercomputing and other areas. Particularly interesting would be its application to

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I\

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

442 G.C.FOX AND W.FURMANSKI

general networks for transmission of data ranging from those in telephone systems, the
structure of management in large companies, and even the network of control satellites
proposed for defensive purposes.

This work was supported in part by DOE grant DE-FG03-85ER25009, the Program
Manager of the Joint Tactical Fusion Office, and the ESD division of the USAF, as well as
grants from IBM and SANDIA.

We thank the many members of the Caltech Concutjrent Computation Program whose work
was essential input to the analysis of this paper.

REFERENCES

Aldcroft, T., Cisneros, A., Fox, G. C., Furmanski, W. & Walker, D. 1988 A banded matrix LU decomposition on
the hypercube. In Proc. 3rd Hypercube Conf., Pasadena, 19-20 January 1988 (ed. G. C. Fox). (In:the press.)
(C®P-348B.)

Aloisio, G., Fox, G. C., Kim, J.S. & Veneznam, N. 1987 A concurrent implementation of the prime-factor
algonthm on hypercube IEEE Trans. Acoustics, Speech, Signal Process. (Submitted.) (C®P-468.)

Bower, J. M., Nelson, M. E., Wilson, M. A,, Fox, G. C. & Furmanski, W. 1988 Piriform (olfactory) cortex model
on the hypercube. In Proc. 3rd Hypercube Conf., Pasadena, 19-20 January 1988 (ed. G. C. Fox). (In the press.)
(C®P-404B.) »

Chandy, K. M. & Misra, J. 1987 Conditional knowlcd‘ge as a basis for distributed simulation. Caltech report
5251:TR:87.

Chen, M., DeBenedictis, E., Fox, G. C., Li, J. & Walker, D. 1988 Hypercubes are general-purpose multiprocessors
with hlgh speed-up. (In preparation.) (C3P-499.)

Dongarra, J.J. 1988 In Proceedings of ICS87, Intematwnal Conference on Supercomputing (ed. ‘C. Polychronoupolos).
New York: Springer-Verlag.

Dongarra, J. J., Du Croz, J., Hammalmg, S. & Hanson, R. J. 1987 An update notice on the extended Blas. ACM
Stgnum Newslett. 21 (4),

Felten, E., Morison, R., Otto, S. W., Barish, K., Fatland, R. & Ho, F. 1986 Chess on the hypercube. In Proc.
2nd Hypenube Corgf., Knoxville (ed. M. T. Heath). SIAM. (C3P-383.)

Flower, J. W. 1987 Lattice gauge theory on a parallel computer. Caltech Ph.D. thesis. (C®P-411.)

Flower, J. W, Otto, S. W. (Caltech) & Salama, M. C. 1988 A preprocessor for finite element problems. In Proc.
Symp. on Parallel Computations and Their Impact on Mechanics, ASME Winter Meeting, 1416 December 1987, Boston.
(In the press.) (C*P-292B.)

Fox, G. C. 1983 Scientific calculations with ensemble computers. In Padua High Energy- Physics Microprocessor
Conference, 23-25 March 1983. Preprint (CALT-68-1032. C3P-37.)

Fox, G. C. 1984 Concurrent processing for scientific calculations. In Proc. IEEE COMPUCON 1984 Conference, San
Fraricisco, 28 February 1984. IEEE Computer Society Press. (C3P-48.)

Fox, G. C. 19852 Are concurrent processors general purpose computers? In IEEE Nuclear Science Symposium,
31 October 1984. (IEEE Trans. NPSS 34.) (C®P-122.)

Fox, G. C. 19855 The performance of the Caltech hypercube in scientific calculations: a preliminary analysis.
Symp. on Supercomputers-algorithms, architectures and scientific computation, 18-20 March 1985, Austin (ed. F. A. Masten
& T. Tajima). Austin: University of Texas Press. (C?P-161.)

Fox, G. C. 19862 Questions and unexpected answers in concurrent computation. In Experimental parallel computing

" architectures (ed. J. Dongarra). Amsterdam: North Holland. (CALT-68-1403, C3P-288.)

Fox, G. C. 19864 Caltech concurrent computation program annual report for 1985-1986. In Proc. 2nd Hypercube
Conf., Knoxville (ed. M. T. Heath). SIAM. (CALT-68-1404, C*P-290B.)

Fox, G. C. 1986¢ A review of automatic load balancing and decomposition methods for the hypercube. In Proc.
Workshop on Numerical Algorithms for Modern Parallel Computer Architectures, IMA, November 1986. (IMA Volumes in
Mathematics and its Applications, vol. 13.) (C3P-385.)

Fox, G. C. 1987 The hypercube as a supercomputer. In 2nd Int. Conf. on Supercomputmg, Santa Clara, May 1987.
St Petersburg, Florida: International Supercomputing Institute, Inc. (C3P-391.)

Fox, G. C. (ed.) 19882 Hypercubes, concurrent computers and applications, 1988. Proc. 3rd Hypercube Conference,
Pasadena, 19-20 January 1988. (In the press.)

Fox, G. C. 19884 The hypercube and the Caltech concurrent computatlon program, a microcosm of parallel
computing. In Special purpose computers (in Methods in computational physics) (ed. B. Alder.) (C*P-422.)

http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PHYSICAL STRUCTURE OF CONCURRENT PROBLEMS 443

Fox, G.C. 1988¢ Domain decomposition in distributed and shared memory environment. I A. Uniform
decomposition and performance analysis for the NCUBE and JPL Mark IIIfp hypercubes. In ICS 87,
International Conference on Supercomputing, Athens, 812 June 1987 (ed. C. Polychronopoulos) (Lecture Notes in
Computer Science). Berlin: Springer-Verlag. (C3P-392.) _

Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon, J. K. & Walker, D. 1988 Solving problems on
concurrent processors. Prentlce Hall: New Jersey »

Fox, G. C. & Otto, S. W. 1984 Algorithms for concurrent processors. Physics Today: (May issue). (C3P-71.)

Fox, G. C. & Otto, S. W. 1986 Concurrent computation and the theory of complex systems. In Proc. 1st Hybercube
Conf., Knoxville (ed. M. T. Heath). SIAM. (C3P-255.)

Fox, G. C., Lyzenga, G., Otto, S. W. & Rogstad, D. 19862 The Caltech Concurrent Computation Program —
project description. Tn Proc. Conf. on The 1985 ASME International Computers in Engineering, 4-8 August 1985,
Boston. ASME ; Berlin: Springer-Verlag. (C2P-157.)

Fox, G. C,, Otto, S. W. & Umland, E. A. 19865 Monte Carlo physics on a concurrent processor. In Conf. on
Frontiers of Quantum Monte Carlo, Los Alamos, 6 September 1985 (J. statist. Phys.), vol. 43, pp. 1209. (C*P-
214.)

Frey, A. & Fox, G. C. 1988 Features of a teraflop supercomputer. In Proc. 3rd Hypercube Conf., Pasadena, 19-20
January 1988 (ed. G. C. Fox). (In the press.) (C2P-606.)

Furmanski, W. & Fox, G. C. 19882 Load balancing by a neural network. In Proc. 3rd Hypercube Conf., Pasadena,
19-20 January 1988 (ed. G. C. Fox). (In the press.) (CALT-68-1408, C3P-363B.)

Furmanski, W. & Fox, G. C. 19885 Optimal communication algorithms on the hypercube. In Proc. 3rd Hypercube
Conf., Pasadena, 19-20 January 1988 (ed. G. C. Fox). (In the press.) (C®P-314B.)

Furmanski, W. & Fox, G. C. 19874 Communication algorithms for regular convolutions on the hypercube. In
Proc. 2nd Hypercube Conf., Knoxville (ed. M. T. Heath). SIAM. (C3P-329.)

Furmanski, W. & Fox, G. C. 19875 Hypercube communication for neural network algorithms. In Proc. 3rd
Hypercube Conf., Pasadena, 19-20 January 1988 (ed. G. C. Fox). (In the press.) (C®°P-495B.) (C®P-405B.)
Furmanski, W. & Fox, G. C. 1988¢ Optimal matrix algorithms on homogenous hypercubes. In Proc. 3rd Hypercube

Conf., Pasadena, 19-20 January 1988 (ed. G. C. Fox). (In the press.) (C*P-386B.)

Gottlieb, A. 1987 An overview of the NYU Ultracomputer Project. In Experimental parallel computing architectures (ed.
J.J. Dongarra). Amsterdam: North-Holland.

Gottschalk, T. D. 1987 Multiple-target track initiation on a hypercube. In 2nd Int. Conf. on Supercomputing, Santa
Clara, May 1987. St Petersburg, Florida: International Supercomputing Institute, Inc. (C3P-398.)

Heath, M. T. (ed.) 1986 Hypercube multiprocessors, 1986. Proc. 1st Hypercube Conf., Knoxville. SIAM.

Heath, M. T. (ed.) 1987 Hypercube multiprocessors, 1987. Proc. 2nd Hypercube Conf., Knoxville. SIAM.

Hey, A., Nicole, D. (Southampton), Fox, G. C. & Otto, S. W. (Caltech) 1988 Communication Overheads for
MIMD Computers G. (In preparation.) (C*P-221.)

Hillis, W. D. 1985 The connection mackine. Cambridge, Massachusetts: MIT Press.

Hillis, W. D. 1987 The connection machine. Scient. Am. 256, 108-115.

Hipes, P. & Kuppermann, A. 1988 Gauss Jordan Matrix-inversion with pivoting on the hypercube. In Proc. 3rd
Hypercube Conf., Pasadena, 19-20 January 1988 (ed. G. C. Fox). (In the press.) (C®P-495B.) (C®P-578.)

Ho, C.-T. & Johnsson, S.L. 1986a Distributed routing algorithms for broadcasting and personalized
communication in hypercubes. In Proc. IEEE 1986 Int. Conf. on Parallel Processing.

Ho, C.-T. & Johnsson, S. L. 19865 Matrix transposition on Boolean n-cube configured ensemble architectures.
Yale report YALEU/DCS/TR-494.

Hopfield, J. J. & Tank, D. W. 1986 Computing with neural circuits, a model. Science, Wash. 233, 625.

Jefferson, D. & Sowizral, H. 1985 Fast concurrent simulation using the time-warp mechanism. In SCG Conference
on Distributed Simulation, San Diego, California.

Johnsson, L. & Ho, C.-T. 1988 Matrix multiplication on Boolean cubes using generic communication primitives.
In Proc. ARO Workshop on Parallel Processing and Medium-Scale Multiprocessors. (In the press.)

Kolawa, A., Fox, G. C. & Williams, R. 1987 The implementation of a dynamic load balancer. In Proc. 2nd
Hypercube Conf., Knoxville (ed. M. T. Heath). SIAM. (C*P-328.)

Koller, J. 1988 A dynamical load balancer in the INTEL hypercube. In Proc. 3rd Hypercube Conf., Pasadena, 19-20
January 1988 (ed. G. C. Fox). (In the press.) (C3P-497.)

Mandelbrot, B. 1979 Fractals: form, chance, and dimension. San Francisco: Freeman.

Meindl, J. D. 1987 Chips for advanced computing. Scient. Am. 257 (4), 72-88.

Messina, P. C. & Fox, G. C. 1987 Advanced computer-architectures. Scient. 4m. 257 (4), 66-77. (C*P-476.)

Salmon, J., Flower, J., Kolawa, A. & Collaha, S. 1988 MOOSE: a multitasking operating system for hypercubes.
In Proc. 3rd Hypercube Conf., Pasadena, 19-20 January 1988 (ed. G. C. Fox). (In the press.) (C®P-586.)

Stout, Q. F. & Wager, B. 19874 Intensive hypercube communication. I. Prearranged communication in link
bound machines. CRL-TR-9-87 Michigan report.

Stout, Q. F. & Wager, B. 19875 Passing messages in link-bound hypercubes. In Proc. 2nd Hypercube Conf., Knoxville
(ed. M. T. Heath). STAM.

Walker, D. 1988 Performance of the Caltech QCD Code on the NCUBE. In Proc. 3rd Hypercube Conf., Pasadena,
19-20 January 1988 (ed. G. C. Fox). (In the press.)

http://rsta.royalsocietypublishing.org/

\

a
A)\
o A

Vo \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\
)

N
7\

A

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

444 o ~ G.C.FOX AND W.FURMANSKI.

Walker, D. & Fox, G.C. 1988 A portable programming environment for concurrent multiprocessors. (In
preparation.) (To be presented at the 12th IMACS World Congress on Scientific Computation, Paris, July
1988.) (C*P-496.)

Walker, D. & Montry, G. (Sandxa) 1988 Implementation and performance of a two dimensional flux corrected
transport code on the NCUBE. In Proc. 3rd Hypercube Conf., Pasadena, 19-20 January 1988 (ed. G. C. Fox). (In
the press) (C°P-495B.)

http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

y B

THE ROYAL A
SOCIETY

MARK Il NODE BOARD

MAIN PROCESSOR SECTION

5 LE
[T pa s

’.--__,—l_r'. ERE RSCY g'h'-'.'r = (4 LEYTES TOTALY

MAIN MEMORY SECTION

Downloaded from rsta.ro

LS A [AN
A _ L LR i
COMMUNICATIONS SECTION
|} I O) R || R £ II:-]
=1

PHILOSOPHICAL
TRANSACTIONS
OF

Ficure 1. The Mark IIIfp hypercube designed and constructed at Caltech’s Jet Propulsion Laboratory (JPL). (a)
The basic 32 node package which can be extended up to 128 modes. (6) The dual 68020 based main node
board. (¢) The WEITEK XL chip set based secondary board.

http://rsta.royalsocietypublishing.org/

= B B ER
l _______ _;i = == ot

I
- . el W S s - T ..-.

. " i-.!._l.l.. m l.!.-...,
= Vo
@ .Hiﬂ...l..l .___.
hﬂl “ . .T

rss0r Board [or NCUBE

. _ -.rm . ” .
lllu.F[!
Ii....,_
e e e B
= B e =N
: BE B BE B _-_
Py
T L TR ..r
= _ i
E E= B B
5 BE B
RS Sl t-....hqr

LT LW

rwummlm.

. The commercial NCUBE/10 hypercube with (a) cabinet which can hold up to 1024 nodes
configured as a 10 dimensional hypercube; (4) basic board containing 64 nodes.

“IGURE 2

b |

Y7 ALIIDOS X7 ALIIDOS
1TVAOY IH L %%F%&J«ﬁ / TVAOY AHL @%ﬁ%ﬁ«ﬁ

http://rsta.royalsocietypublishing.org/

